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Abstract
Purpose: To evaluate the influence of the geometry and design of prosthetic crown
preparations on stress distribution in compression tests, using finite element analysis
(FEA).
Materials and Methods: Six combinations of 3D drawings of all-ceramic crowns
(yttria-stabilized zirconia framework and porcelain veneer) were evaluated: F, flat
preparation and simplified crown; FC, flat preparation and crown with contact point;
FCM, flat preparation and modified crown; A, anatomical preparation and simplified
anatomical crown framework; AC, anatomical preparation and crown with contact
point; and ACM, anatomical preparation and modified crown. Bonded contact types
at all interfaces with the mesh were assigned, and the material properties used were ac-
cording to the literature. A 200 N vertical load was applied at the center of each model.
The maximum principal stresses were quantitatively and qualitatively analyzed.
Results: The highest values of tensile stress were observed at the interface be-
tween the ceramics in the region under the load application for the simplified models
(F and A). Reductions in stress values were observed for the model with the anatom-
ical preparation and modified infrastructure (ACM). The stress distribution in the flat
models was similar to that of their respective anatomical models.
Conclusions: The modified design of the zirconia coping reduces the stress concen-
tration at the interface with the veneer ceramic, and the simplified preparation can
exert a stress distribution similar to that of the anatomical preparation at and near the
load point, when load is applied to the center of the crown.

Fully ceramic restorations have long been used in dentistry
for their superior esthetics and biocompatibility.1 The use of
zirconia-based ceramics with high fracture toughness (Y-TZP:
zirconia partially stabilized by yttrium oxide) increased the
indication spectrum of these restorations, allowing for the use
metal-free pieces in high-masticatory-load areas.2,3

Despite the promising and initially satisfactory laboratory
results of Y-TZP and porcelain (feldspathic ceramic) bilami-
nate restorations, clinical studies have reported the failure of

this system during various periods in function.4-8 The most
frequently encountered failure types are chipping and delam-
ination, or, in other words, cohesive and adhesive failure of
the porcelain. This illustrates the hypothesis that the weakest
material dictates strength in a bilaminate system.

Investigators have studied several factors in an attempt to
better understand these failures.9-20 In the study of restorative
materials by in vitro tests, the results with specimens having
simplified formats were reported to be constant.21-36 When no

1Journal of Prosthodontics 00 (2014) 1–6 C© 2014 by the American College of Prosthodontists
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Groups
Geometry of the 

preparation and cement 
layer

Design of Y-TZP 
frameworks

Design of the porcelain 
veneers

F: Flat (axisymmetric)

Flat

Cement layer (100 μm)

0.5 mm thickness flat 
framework

1.0 mm maximum 
thickness

FC: Flat with contact point
with contact point

FCM: Flat with contact point and 
modified framework Modified framework 1.0 mm uniform thickness

A: Anatomical

Anatomical

Cement layer (100 μm)

0.5 mm thickness 
framework

1.0 mm maximum 
thickness

AC: Anatomical with contact point
with contact point

ACM: Anatomical with contact point 
and modified framework Modified framework 1.0 mm uniform thickness

Figure 1 Parameters of the six crowns in relation to the geometry of the preparation, design of the restoration, and thicknesses of the infrastructure
and veneering ceramics.

2 Journal of Prosthodontics 00 (2014) 1–6 C© 2014 by the American College of Prosthodontists
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Table 1 Mechanical properties of materials according to published data

Material Modulus of elasticity Poisson’s ratio References

G10 14.9 0.31 Yi & Kelly, 200844

Resin cement (Panavia 21 EX) 3.0 0.35 Yi & Kelly, 200844

Y-TZP In-Ceram YZ (Vita Zahnfabrik) 209.3 0.32 Borba et al, 201145

VM9 (Vita Zahnfabrik) 66.5 0.21 Borba et al, 201145

anatomical specimens are used in laboratory tests, it is possi-
ble to have more control over the basic mechanical properties
of the materials, but the effects of restoration geometry on
stress distribution are excluded.37 Few studies have evaluated
the influence of this type of specimen on stress distribution and
material strength.2

Another important factor in the strength of all-ceramic
crowns is the design of prosthetic restorations.11,14,16,17 The
resistance of a bilaminate system is dictated by its weakest
component.38-40 Therefore, increasing the amount of Y-TZP in
a crown and improving the porcelain support could improve
stress distribution internally.19

Thus, the aim of this study was to evaluate the influence of
preparation geometry and the design of prosthetic restorations
on stress distribution in monotonic compression tests using
3D finite element analysis (FEA). The tested hypotheses were
that: (1) the simplified models would adequately reproduce
the loading effects of anatomical specimens, and (2) the use
of the modified Y-TZP infrastructure would improve stress
distribution.

Materials and methods

We used six combinations of all-ceramic crowns with Y-TZP
infrastructure veneered with feldspathic ceramic (porcelain),
with dimensions corresponding to those of a first molar. We
studied the geometry of different G10 preparations (flat or
anatomic), with variations in their prosthetic crowns (no proxi-
mal contact, with proximal contact, and with proximal contact
and modified infrastructure) (Fig 1). For the “contact crowns,”
the external shapes of the crowns were remodeled, aiming for
an approximation to the designs used clinically. Therefore, the
contact crowns had their porcelain layer increased, while for
the “contact crowns with modified infrastructures,” the exter-
nal shape of the crown was kept, and the framework was made
larger to keep the porcelain with 1 mm uniform thickness. G10
is an epoxy resin used in laboratory tests as a material anal-
ogous to dentin, to ensure homogeneity of the test substrate,
and has been validated by Kelly et al41 with respect to elastic
behavior and adhesion to resin cement.

The 3D geometry evaluations were performed with CAD
(computer-aided design) software (Rhinoceros 4.0; McNeel
North America, Seattle, WA), according to the BioCad
protocol.42,43 The models were imported into Ansys software
(version 13.0; Ansys, Canonsburg, PA) for the preprocessing
phase of FEA. In this step, the mechanical properties of the ma-
terials were identified, according to published data (Table 1).

The basis for the G10 preparation has displacement restricted
at 0 mm in all directions (x, y, z). We considered perfect
bonding, with no defects on any model interface, by assign-
ing the bonded contact type to all interfaces (G10/cement;
cement/infrastructure, infrastructure/porcelain). The mesh re-
finement was achieved with 25% relevance for the three exist-
ing contacts (contact sizing—relevance 25). All materials were
considered isotropic, homogeneous, and linear. The mesh was
predominantly composed of tetrahedra with 10 nodes. A 200 N
load was vertically applied through a loading force vector, into
a knot in the center of each model.

The information from the preprocessing phase was trans-
formed into numeric data with the same processing computa-
tional software as used for the static mechanical analysis. We
performed a convergence analysis at the 10% level, and the
consistency of the results was evaluated by the total displace-
ment of the geometries and uniform voltage gradient according
to Von Mises criteria. Analysis of maximum principal stresses
(MPS) was used to differentiate areas of tensile (positive) and
compressive stress (negative) in the ceramic material (friable),
and the results of stress distribution along the structures were
compared between and among experimental groups.

Results

The MPS distribution patterns proved to be quite similar be-
tween and among the studied models, with a significant con-
centration of tension in the singularity area (area in and around
the load application point) (Fig 2). Figure 3 shows a bar graph
with the MPS results (MPa) for the studied models. When
infrastructure and porcelain were isolated (Fig 2, “Infrastruc-
ture”), there was a zone of tensile stress concentration in the
inner area of the infrastructure, at its contact with resin ce-
ment, whose maximum values (MPa) were: F, flat preparation
and simplified crown, 88.1; FC, flat preparation and crown
with contact point, 102.1; FCM, flat preparation and modi-
fied crown, 102.1; A, anatomical preparation and simplified
anatomical crown framework, 103.4; AC, anatomical prepara-
tion and crown with contact point, 97.9; and ACM, anatomical
preparation and modified crown, 98.9.

Discussion

Despite the known advantages of the bilaminate systems com-
posed of Y-TZP and porcelain, these systems still experience
failures. These failures can be associated with diverse fac-
tors: low fracture toughness18 and thickness of the porcelain,12

inconsistency or differences in thermal expansion between

Journal of Prosthodontics 00 (2014) 1–6 C© 2014 by the American College of Prosthodontists 3
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Figure 2 MPS results for the studied models with 200 N vertical load. Standardized scale.

materials,9 inadequate cooling rate,15 processing techniques,10

phase transformation,13 low thermal diffusivity of Y-TZP,12 and
insufficient support of the porcelain by the infrastructure.19,20

The present study focused on the thickness, shape, and support
of the ceramics.

The stress distribution in the models studied showed simi-
lar patterns. The singularity area showed higher tensile value

concentrations, suggesting that the fracture would begin there.
Slightly soft distribution curves were observed only in this re-
gion. When infrastructure and porcelain were isolated, we also
observed stress concentration in the inner region of the infras-
tructure, which is associated with a low modulus of elasticity of
the substrate46 (cement layer and G10 preparation) and bending
of the infrastructure; however, these values were significantly

4 Journal of Prosthodontics 00 (2014) 1–6 C© 2014 by the American College of Prosthodontists
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Figure 3 Bar graph with the MPS results (MPa) for the studied models
with 200 N vertical load.

lower (ranging from 88.1 to 103.4 MPa) than those of porcelain
(ranging from 1143.2 to 1771.5 MPa). With this, and due to the
fact that Y-TZP is the more resistant material in this set, we did
not focus further on this area in our assessment. The remainder
of the model had minimal and regular tensile stresses.

Numerically, the results of this work showed higher MPS
values in the simplified models, both flat and anatomical.
This can be explained by the lower porcelain content in these
models. The porcelain, due to its inferior mechanical proper-
ties, is responsible for most of the stress dissipation. Among the
simplified models, an increase in porcelain thickness decreased
stress concentration in the material, which can occur due to
the larger volume available for stresses to dissipate. Despite
this, which was also observed in another study,31 there is no
consensus in the literature, since some studies have reported
an opposite effect,14,16 and others found no significant effect of
porcelain thickness on the fracture strength of restorations.29

Between models C (contact) and CM (modified contact),
values were similar, and this may be associated with the fact
that the drawings in question had little difference in their
Y-TZP volumes in the region of load application. The sim-
ulation of crowns with larger dimensions, which significantly
alter the ratio between zirconia and porcelain, could result in
differences in stress values, as observed by Kokubo et al.19

Thus, the second hypothesis was partially accepted.
In this study, we also compared the simplified model (F)

with drawings having clinical potential (AC and ACM). Among
these models, the stress distribution was similar inside the ge-
ometry of each model, but the difference between the MPS
suggests that when ACM or AC models were replaced by F,
there may be an overestimation of material strength data; how-
ever, taking into consideration the difficulty of standardizing
the manufacture of AC or ACM specimen types for laboratory
tests, the choice of simplified models can be justified as a means
of reducing bias in the work. In this case, it would be necessary
to take such differences into account in the results.

This study did not consider the residual stress that may re-
sult from the crown manufacturing process and assumed that
all materials had perfect unions and total absence of internal
defects. Therefore, the “values” observed here should not be di-
rectly compared with other noncomputational laboratory find-

ings, but rather should be compared with each other. The load
application was standardized to allow for comparison between
and among models and also may differ from what is found
in laboratory tests. Furthermore, precisely loading differs from
the facet contacts that can be clinically found47 and that better
distribute the load.

Clinical studies with crowns or posterior fixed partial den-
tures (FPD) of bilaminate ceramic (Y-TZP and porcelain) re-
ported survival rates between 73.9 and 100% after 2 to 5 years
of observation.4-8 The chipping and surface wear of porcelain
were mainly responsible for system failures. Chipping is not
usually responsible for the need to replace these restorations.
Although representing a failure of the material, it does make
the restoration susceptible to repair; however, in some stud-
ies, extended fractures and delamination have been observed
in porcelain and have led to the replacement of restorations.6-8

Infrastructure failure, although rare, was reported in two cases
from a total of 158 FPDs, in Christensen and Ploeger’s8 study.

One factor that can distance the findings of clinical and lab-
oratory studies is that clinics are not subject to standardized
conditions, with variations in thermal contraction, geometry,
surface treatment, environmental conditions, and load orien-
tation. Nevertheless, the results of the present study suggest
cohesive failure of porcelain as the main reason for failure of
these crowns.

Conclusions

Within the limitations of the present work, we reached the
following conclusions:

(1) The modified design of the anatomical zirconia copings
reduces the stress concentration at the interface with the
veneer ceramic.

(2) The simplified preparation can exert stress distribution
similar to that of the anatomical preparations with con-
tact, when load is applied to the center of the crown.
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