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a  b  s  t  r  a  c  t

Objectives. To fabricate polymer-infiltrated silicon nitride composite (PISNC) and evaluate

the  potential of PISNC in dental application.

Methods. Porous silicon nitride (Si3N4) ceramics were fabricated through gelcasting and pres-

sureless sintering. Polymer infiltrating was carried out then and composites were obtained

after curing of polymer. Flexural strength and microstructures of porous ceramic scaffolds

and  polymer-infiltrated composites were obtained by three-point bending and SEM, respec-

tively. Phase distributions of polymer-infiltrated ceramics were observed by EDS. Human

gingival fibroblast cells (HGFs) were used to evaluate the cytocompatibility and IL-6 release.

The cell morphology were observed by SEM. The amount of released IL-6 was investigated

using ELISA test system.

Results. Porosity and mechanical strength of porous ceramics ranged from 45.1 to 49.3% and

171.8–262.3 MPa, respectively. The bicontinuous structure of polymer-infiltrated composites

possessed them with excellent mechanical properties. Porosity and mechanical strength of

polymer-infiltrated Si3N4 composites ranged from 1.94 to 2.28% and 273–385.3 MPa, respec-

tively. Additionally, the PISNC enhanced the initial adhesion and spreading activity of HGFs

compared with PMMA. The PISNC showed similar IL-6 release performance with PMMA

sample.

Significances. The PISNC is a promising candidate for dental restorations and high-load med-

ical  applications.

© 2019 Published by Elsevier Inc. on behalf of The Academy of Dental Materials.

1.  Introduction

Silicon nitride (Si3N4) ceramics possess excellent propertiesQ5

such as high strength, hardness, wear resistance and thermal

∗ Corresponding authors.
E-mail addresses: doctorsunjian74@aliyun.com (J. Sun), cqning@mail.sic.ac.cn (C. Ning).

shock resistance [1–3], which lead to wide applications of Si3N4

ceramics as bearings, heat engine components, cutting tools,
hot gas filters, radome materials, and so on [3–5]. Recently, sil-
icon nitride (Si3N4) based ceramics have attracted more and
more  attention in biomedical fields due to their inherent bioin-

https://doi.org/10.1016/j.dental.2019.05.022
0109-5641/© 2019 Published by Elsevier Inc. on behalf of The Academy of Dental Materials.
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ert characteristic and good biocompatibility. The possibility
of using silicon nitride ceramics for structural orthopaedic
implants has been well explored and proved by Mazzocchi
et al. [6,7]. And diamond-like carbon (DLC) modified Si3N4

ceramics has been proved to be well adequate for articular
prostheses medical application [8]. Badran et al. also suggest
Si3N4 implants as a promising choice in dental implantol-
ogy [9]. However, all-ceramic restoration of Si3N4 ceramics
may result in excessive wear of opposing teeth. Ceramic-
polymer composite strategy is considered as an effective way
to improve the comprehensive performance of all-ceramic
restorations.

Composites of polymer and ceramic are expected to
combine advantages of both components. Comparing with
mono-phase polymers or ceramics, polymer-ceramic com-
posites are likely to achieve an elastic modulus similar to
natural bone tissue. However, it seems that polymer-based
composites always show low strength and low toughness,
which restrict their wide applications. Generally, polymer-
ceramic composites fabricated by dispersing ceramic particles
in polymer matrixes can improve the strength of polymers to
some extent [10,11]. While the mechanical properties of poly-
mers limit the final mechanical properties of polymer-ceramic
composites since the polymer phase provide a continuous net-
work in this case. A new way that can effectively improve
the mechanical properties of resin-ceramic composites has
been reported recently. This method creates a bicontinuous
network which contains a porous ceramic structure and an
interpenetrated polymer phase [12,13]. The porous ceramic
skeletons can provide the composites with high strength and
moderate hardness. In this case, both inorganic and organic
phases are continuous in the composites. Thus, the advan-
tages of organic and inorganic part can be utilized to the most.

Si3N4 ceramic with elongated grains is supposed to be an
excellent candidate of porous matrix. High strength porous
Si3N4 ceramics with moderate porosity can be obtained
through gelcasting with IBMA (copolymer of isobutylene and
maleic anhydride) and pressureless sintering [14]. By infil-
trating polymer into high strength porous Si3N4 skeletons,
bicontinuous ceramic-polymer composites with excellent
mechanical strength can be fabricated. Which can broaden
the use of Si3N4 ceramics in high load-bearing medical appli-
cations, especially in dental applications.

In present work, porous Si3N4 scaffolds with various
porosity were fabricated through gel casting method from sus-
pensions with different solid content. Bicontinuous PISNCs
were then fabricated by infiltrating PMMA  resin into porous
scaffolds followed by a polymerization process. Microstruc-
ture, mechanical performance of the porous ceramic matrix
and PISNCs were investigated. The cytocompatibility of PIS-
NCs were also compared with PMMA  and Si3N4 ceramics.

2.  Experimental  procedure

2.1.  Fabrication  of  polymer-infiltrated  Si3N4

composites

Porous Si3N4 ceramics were fabricated through gelcasting
and liquid-phase sintering. Si3N4 powder (�-phase ≥ 95 wt%;

d50 = 0.5 �m;  Ube Industries Ltd., Japan), Y2O3 powder (5.0 �m;
purity ≥ 99.99 wt%; Yuelong Company, Shanghai, China) and
copolymer of isobutylene and maleic anhydride (IBMA,
Isobam104#, Kuraray Co., Ltd., Osaka, Japan) were added into
distilled water and milled with Si3N4 balls for 2.5 h at a rotat-
ing speed of 350 r/min. Solid content of the suspensions were
50 wt%, 55 wt%, and 60 wt%. The obtained homogeneous slur-
ries were casted into plastic molds and then consolidated.
After demolding, the green bodies were dried at room temper-
ature for 48 h. Finally, the samples were heated up to 600 ◦C in
vacuum with a dwell time of 2 h to remove organic additives
followed by sintering at 1700 ◦C for 2 h under N2 atmosphere
to obtain porous Si3N4 ceramics.

The as-received porous Si3N4 ceramics were immersed into
3- (Trimethoxysilyl) propyl methacrylate (KH-570, Sinopharm
Chemical Reagent Co., Ltd., Shanghai, China) solution (the
solvent was ethanol) with a concentration of 5 wt%  for 3 h fol-
lowed by a drying at 120 ◦C. The silane-coupling agent treated
samples were subsequently immersed in the monomer
solution of Methyl methacrylate (MMA, Huliang Biological
Technology Co., Ltd., Shanghai, China) containing 1 wt%  ben-
zoyl peroxide (BPO, Huliang Biological Technology Co., Ltd.,
Shanghai, China) for 24 h, followed by a polymerization pro-
cedure at 150 ◦C for 1 h under atmospheric pressure. Porous
Si3N4 ceramics obtained from suspensions with solid content
of 50 wt%, 55 wt%, 60 wt% were named as SN50, SN55, SN60,
respectively. Polymer-infiltrated Si3N4 composites obtained
from SN50, SN55, SN60 were named as PSN50, PSN55, PSN60,
respectively.

Fig. 1 illustrated the detailed procedure of polymer infiltrat-
ing in the present work. The elongated Si3N4 grains stacked
together and resulted in well connected pores in porous
ceramic scaffolds. As immersing porous Si3N4 scaffolds into
PMMA resin, polymer monomers infiltrated into pores auto-
matically due to the capillarity. After dwelling for certain time,
pores in ceramic scaffolds were filled by polymer monomers.
Then polymer infiltrated composites were fabricated by in-situ
curing of PMMA.

2.2.  Characterization  of  microstructure  and
mechanical  properties

Morphologies of the samples were observed by scanning elec-
tron microscope (SEM, S-3400 N, Hitachi, Japan). The back
scattered electron (BSE) and corresponding energy disper-
sive spectrometer (EDS) images of PISNCs were observed
by a field-emission scanning electron microscope (FE-SEM,
SU8220, Hitachi, Japan). Porosity of porous Si3N4 ceram-
ics and polymer-infiltrated Si3N4 ceramics were measured
by Archimedes method. Flexural strength were tested via
a three-point bending method with a span of 30.0 mm
and a cross-head speed of 0.5mm min−1 using specimens
with dimensions of 3.0 mm × 4.0 mm × 36.0 mm (Instron-5566,
Instron Co., Ltd., American). The tensile surface was polished
with diamond paste before testing. Five parallael samples of
each composition were used for the measurements of flexu-
ral strength and open porosity. Micro-hardness measurements
were carried out on a Vickers hardness tester (TUKON-2100B,

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

https://doi.org/10.1016/j.dental.2019.05.022
https://doi.org/10.1016/j.dental.2019.05.022


DENTAL 3378 1–9
Please cite this article in press as: Wang F, et al. High strength polymer/silicon nitride composites for dental restorations. Dent Mater (2019),
https://doi.org/10.1016/j.dental.2019.05.022

ARTICLE IN PRESSDENTAL 3378 1–9

d e n t a l m a t e r i a l s x x x ( 2 0 1 9 ) xxx–xxx 3

Fig. 1 – Schematic illustration of polymer infiltrating procedure.

Instron Co., Ltd., American) and the mean value was an aver-
age of five measurements.

2.3.  Cytocompatibility

2.3.1.  Sample  treatment
PSN60 ceramic-polymer composite was selected as a repre-
sentative polymer-infiltrated Si3N4 composite to evaluate the
cytocompatibility and cytokine release behavior, compared
with pure PMMA  and Si3N4 samples. Surface of the samples
were ground and polished to get a similar condition to clinical
use. The polished samples were ultrasonically cleaned with
ethonal, sterilized water and acetone in turn and then dried
in air. Finally, all the samples were autoclaved at 150 ◦C for
60 min.

2.3.2.  Cell  culture
Human gingival fibroblast cells (HGFs, Department of Ortho-
pedics, Shanghai Sixth People’s Hospital, Shanghai, China)
were used to evaluate the cytocompatibility and IL-6 release.
HGFs were cultured in a 5% CO2 incubator at 37 ◦C with the d-
minimum essential medium (D-MEM, Gbico, Invitrogen Inc.)
containing 10% fetal bovine serum (FBS, Hyclone, USA) and 1%
antimicrobial of penicillin and streptomycin (Hyclone, USA).
Cell culture medium was changed every 2 days. Before reseed-
ing cells on the sample surface, HGFs were detached from
the 75cm2 flakes with 1 ml  trypsin/EDTA (0.25% trypsin, 0.02%
EDTA) (Gibco, Invitrogen) at 37 ◦C with 5% CO2 for one min-
utes followed by a centrifugation at 1000 rpm for 5 min. Then,
the supernatant was removed and proper amount of DMEM
was added to prepare cell suspentions with cell densities of
10.0 × 104 cells/ml and 5.0 × 104 cells/ml.

2.3.3.  Cell  morphology
The autoclaved samples were put in a 24-well culture plate
and 1 mL  HGFs suspension with a cell density of 10.0 × 104

cells/ml were added to each sample. At each collecting time

point, the samples with HGFs were transferred to a new 24-
well plate and washed with phosphate buffered saline (PBS)
for twice. Afterwrds, an overnight fixation in 2.5% glutaralde-
hyde was performed. The fixed samples were then dehydrated
in a graded series of ethanol solutions (30, 50, 75, 90, 95 and 100
v/v %) and then dried in air. The cell morphology were then
observed by SEM.

2.3.4.  Cell  proliferation
300 �l HGFs suspension with a cell density of 5.0 × 104 cells/ml
were added to each sample and cultured for 2d, 5d and 7d.
At each collecting time point, the samples were transferred
to a new 96-well plate, then 150 �l D-MEM of 10 v/v% alamar
blue was added to each sample and cultured for another 2 h.
Afterwards, 100 �l of the above medium was transferred into
a 96-well black plate and the fluorescent intensity was mea-
sured with an excitation wavelength and emission wavelength
of 560 nm and 590 nm,  respectively.

2.3.5.  Cytokine  analysis
Samples were put into a 96-well culture plate. 300 �l HGFs
suspension with a cell density of 10.0 × 104/ml  were added
to each well and cultured for 6 h, 1d, and 2d. At each col-
lecting time point, the supernatant was collected and fresh
culture medium was added. All the collected supernatant was
stored at −20 ◦C before testing. The amount of released IL-
6 was investigated using ELISA test system according to the
manufacturer’s instructions (Human IL-6 Elisa Kit, Invitrogen,
USA). The amount of cytokine release was quantified against
a standard curve of purified human IL-6.

2.4.  Statistical  analysis

All data were expressed as mean ± standard deviation (SD).
The statistically significant difference was measured using
two-way analysis of variance and Tukey’s multiple compari-
son tests. Statistical analysis was carried out using a GraphPad
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Fig. 2 – Physical and mechanical properties of porous Si3N4 scaffolds and polymer infiltrated Si3N4 composites as a function
of solid content: (a) open porosity, (b) flexural strength, (c) hardness, (d) elastic modulus.

Prism 5 software package and the value of p < 0.05 was consid-
ered statistically significant.

3.  Results

3.1.  Porosity  and  mechanical  performance  of  porous
Si3N4 ceramics  and  PISNCs

Open porosity and flexural strength of the porous Si3N4 ceram-
ics and PISNCs were shown in Fig. 2a–b. It could be seen that
the porosity of Si3N4 scaffolds decreased slightly with the
increase in Si3N4 content. Accordingly, the flexural strength
showed an increace with the increase in Si3N4 content.
All porous Si3N4 scaffolds possessed excellent mechanical
strength with moderate porosity as expected. These high
strength porous scaffolds guaranteed the excellent mechan-
ical strength of PISNCs. After polymer infiltrating process,
nearly fully dense composites (with porosity less than 2.3%)
could be obtained and the flexural strength was greatly
improved. The flexural strength of PSN60 reached up to
385.3 MPa.  The hardness of PISNCs was less than 2.4 GPa and
the elastic modulus is less than 59.3 MPa,  which is similar
to human bone tissues. It indicated that PISNCs possessed
excellent flexural strength with moderate hardness and elastic
modulus (Fig. 1c–d).

3.2.  Microtopography  of  porous  Si3N4 scaffolds  and
PISNCs

Fig. 3 showed the fracture surface of porous Si3N4 ceramic
SN50 and its corresponding polymer-infiltrated composite

PSN50. The micrographs revealed typical elongated Si3N4

grains in porous Si3N4 ceramic through liquid-phase-sintering
mechanism [14]. After polymer was infiltrated, few pores were
detected on the cross section of PSN50 sample, indicating a
well infiltration of polymer and good combination of ceramic
phase and polymer phase.

3.3.  Surface  elemental  characterization  of  PISNCs

Element analysis of PSN50 were shown in Fig. 4. The back
scattered electron (BSE) image  in Fig. 4a revealed the possible
distribution of ceramics and polymer phase by the difference
between brightness. In the Fig. 4a, the white flakes repre-
sented the location of yttrium (Y) which was the heaviest
element among the existed elements in the sample. The dark-
est part represented the location of element carbon (C). Thus,
the brighter parts showed area of element nitrogen (N). The
energy dispersive spectrometer (EDS) results in Fig. 4b–d fur-
ther confirmed the distribution of elements N, C and Y by
direct pointed out the distribution of them on the surface.
The three elements could be regarded as references of Si3N4,
PMMA and Y2O3, respectively. Thus the interpenetrated struc-
ture of ceramic skeleton and polymer were verified.

3.4.  Response  of  HGFs

To be successfully used in vivo, the cytocompatibility of PSN60
were evaluated using HGFs. Pure medical PMMA  and Si3N4

were used as controls. SEM morphologies of HGFs cultured
on various surfaces at various time points were shown in
Fig. 5. After 1 h culture, HGFs on PMMA surface exhibited
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Fig. 3 – Micrographs of fracture surface from porous Si3N4 ceramics SN50 (a) and polymer infiltrated Si3N4 ceramics PSN50
(b).

a spherical morphology with few filopodia, while the cells
seeded on Si3N4 and PSN60 samples spread much faster than
those on PMMA  surface, both filopodia and lamellipodia could
be clearly observed. With an increase of culture time, HGFs
on Si3N4 and PSN60 samples showed polygonal sharps with
plenty of filopodia and lamellipodia while the cells on PMMA
just started to spread. After 24 h culture, HGFs on all samples
displayed a flat spreading with a lot of filopodia and lamel-
lipodia. The cells on Si3N4 and PSN60 samples displayed much
better adhesion than those on PMMA.  The above results indi-
cated that PSN60 samples enhanced the initial adhesion and
spreading activity of HGFs compared with PMMA.

The proliferation of HGFs cultured on sample surfaces were
estimated by the alamar blue assay and the results were
shown in Fig. 6. At the early stage of culture, there were no
statistically difference among the three groups. After 5 and
7 days culture, the cell proliferation on Si3N4 samples was
slightly higher than that on PMMA  and PSN60 samples, but the

differences were not significant. In general, HGFs on all three
samples showed a significantly increase with the increase in
culture time, indicating PSN60 and the control groups were all
favorable to the growth and proliferation of HGFs.

IL-6 was generally regarded as one of the key cytokines
which were involved in the induction and regulation of host
responses in the inflammatory reactions [15]. In order to
determine the early gingival and periodontal inflammation
caused by the three kinds of materials, the release of IL-6
from HGFs was investigated and the results were shown in
Fig. 7. In a whole, the IL-6 released at very low level for all
the groups at all collecting time points. At all the collecting
time points, Si3N4 sample showed a lower level of IL-6 release
than PMMA and PSN60 samples, indicating Si3N4 ceramic had
a superior biocompatibility. While the IL-6 release was no sig-
nificant difference between PSN60 and PMMA  samples. Thus
the composite PSN60 were potential to have comparable bio-
compatibility with medical PMMA.

Fig. 4 – The back scattered electron (BSE) and corresponding energy dispersive spectrometer (EDS) images of polymer
infiltrated Si3N4 composite PSN50.
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Fig. 5 – SEM morphologies of HGFs cultured on sample surfaces for various times.

Fig. 6 – Fluorescence intensity of HGFs cultured on sample
surfaces for various times.

4.  Discussion

Gelcasting has always been proved as a way to fabricate
ceramics with uniform microstructure and excellent mechan-
ical performance since reported by Omatete et al. [16–18].
Generally, fabricating porous scaffolds with high strength
were one of the most essential points to obtain polymer-
infiltrated composites with excellent mechanical properties.
Thus, porous Si3N4 ceramics fabricated through gelcasting

Fig. 7 – IL-6 release of HGFs cultured on sample surfaces for
various times, ***p < 0.001.

that possessed high strength were promising candidates of
porous scaffolds in polymer-infiltrated composites. Addition-
ally, liquid-phase-sintered porous Si3N4 ceramics possessed
porous structure by clubbed grain stacking [19–22]. Excellent
connectivity between these pores was ensured by this unique
microstructure, which was important for fully infiltrating of
polymer into pores. Thirdly, these elongated �-Si3N4 grains
could lead to cracks deflection in fracture, which would be
beneficial to the mechanical performance of the composites
[23,24]. In this work, porous Si3N4 ceramics with moderate
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porosity and excellent mechanical strength were fabricated
by gelcasting method as shown in Fig. 2. Porosity as well as
flexural strength were able to be adjusted by controlling solid
content of suspensions in preparing procedure. With increas-
ing solid content of suspensions from 50 wt% to 60 wt%, open
porosity of porous Si3N4 ceramics decreased from 49.3% to
45.1%, while the flexural strength increased from 171.8 MPa
to 262.3 MPa accordingly.

Polymer was infiltrated into porous Si3N4 scaffolds to fab-
ricate PISNCs. Fig. 2(a) indicated that pores in scaffolds were
well filled by polymer, the porosity of PISNCs was lowered to
1.94%–2.28%. An impressive improvement in flexural strength
after compositing was also detected from Fig. 2(b). The PSN60
possessed flexural strength of 385.3 ± 14.3 MPa,  which was
much higher than commercially resin-based composites [11]
and comparable with Si3N4-bioglass composites [25]. The
comparison of different polymer-based composites, including
the result of present study was shown in Fig. 8. It was attrac-
tive to find out that the polymer infiltrated Si3N4 composite
showed super-high flexural strength. Generally, composites
possessed flexural strength less than 200 MPa, had limited
applications. Polymer infiltrated zirconia and silicon nitride
ceramics could lead to composites with flexural strength
higher than 300 MPa.  Comparing to the polymer infiltrated
zirconia composites with polymer content less than 30 vol%
[29], the polymer content in PSN60 prepared in the present

Fig. 8 – Flexural strength of various organic–inorganicQ1

composites [11,27,28,10]. The big red pentagram represents
the flexural strength in this work. (For interpretation of the
references to colour in this figure legend, the reader is
referred to the web version of this article.)

reached nearly up to 43 vol%, which could result in a better
machinability.

Moreover, the hardness of PISNCs ranged from 1.86 GPa
to 2.40 GPa, which were similar to the hardness of enamel

Fig. 9 – Schematic illustration of polymer infiltrating in porous Si3N4 ceramics: (a)–(c). (d) shows corner area not fully
infiltrated by polymer in the composite.
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Fig. 10 – Schematic illustration of force equilibrium during polymer infiltrating process in porous Si3N4 ceramics at corner
areas.

[26]. Once referred to elastic modulus, more  potential could
be expected for PISNCs. It was believed that high modulus
of ceramics might lead to stress shielding in body. While the
elastic modulus of PISNCs (52.1–56.1 GPa) located closely to
the modulus of cortical bone [25] and enamel [26], thus PIS-
NCs could possess significant potentials in high load medical
applications.

Micrographs of fracture surface from porous Si3N4 ceram-
ics SN50 showed uniform distribution of Si3N4 grains and
pores, which was important for the well mechanical perfor-
mance of both porous scaffolds and PISNCs. These clubbed
grains stacked together played essential roles in the high
strength. After polymer infiltrating and curing, almost all
pores were filled by polymer in Fig. 3b. However, several nano-
pores were still existed in the composites, these pores were
origined from pores failed to be infiltrated or caused by resin
shrinkage. The detail distribution of polymer and ceramic
phases in the bicontinuous PISNC was shown in Fig. 4. Ele-
ments distribution in Fig. 4b–d of N, C, Y represented the
distribution of Si3N4, PMMA  and Y2O3, respectively, which
agreed well with what was seen from BSE image  in Fig. 4a.
The connected pores in ceramic was filled by polymer phase,
constructed a bicontinuous organic–inorganic composite.

Although high strength PMMA-Si3N4 composites were
obtained, it should be noted that some corner areas of pores
formed by stacked grains in PISNCs were not fully infiltrated
in this study, which might because the special pore structure
caused by rod shape Si3N4 grains. Thus the mechanical perfor-
mance of PISNCs still had room for improvement. A schematic
illustration of this phenomenon was shown in Fig. 9.

A schematic in Fig. 10 was used to explain this
phenomenon through mechanical equilibrium. During the
infiltrating, when polymer droplet infiltrated to the corner of
stacked grains, a balance can be explained by the following
equation:

Fi = Fp + 2cos�Ff

Where, Fi is the force that pushing polymer forward, Fp is the
force that caused by air left in the pores, Ff is the friction force
between polymer and Si3N4 grains. Under this mechanical bal-
ance, polymer cannot fill the pores completely and results
in unfilled pores in PISNCs. If Fi had advantages over other
forces, polymers would further infiltrating until a new balance
was reached. In fact, as long as air remained in the pores, a

balance would be reached anyhow since Fp increased along
with volume compression. Thus, these pores were hard to be
infiltrated completely in porous scaffolds. To achieve idealy
infiltrated composites, vacuum treatment before and during
infiltrating could be a good additional assistance, which would
benefitial to the further improvement of the mechanical per-
formance.

The cytocompatibility results showed that PSN60 pos-
sessed excellent performance on initial adhesion, spreading
and proliferation of HGFs. IL-6 release behavior in HGFs cul-
tured with materials was used to predict the early gingival and
periodontal inflammation stimulated by three groups of mate-
rials. It showed that the three groups exhibited low IL-6 release
implying that all the tested materials had slight inflammatory
response. Since Si3N4 ceramic is a stable bioinert material, it
showed a significantly lower level of IL-6 release than PMMA
and PSN60 samples, indicating Si3N4 ceramic had an suprior
biocompatibility. While, PSN60 showed a similar IL-6 release
performance with PMMA. Since PMMA had been widely used
in dental restorations, it indicated that PISNCs would be clin-
ically safe.

5.  Conclusions

In the present work, polymer-infiltrated Si3N4 composites
with excellent mechanical performance were fabricated from
high strength porous Si3N4 ceramics. PISNCs possessed excel-
lent flexural strength with moderate hardness and elastic
modulus. The flexural strength of PISNCs obtained from SN60
was high as 385.3 MPa, which contained a polymer volume
nearly 43 vol%. Whereas, the hardness and elastic modulus
of PSN60 were 2.4 GPa and 56.1 GPa, respectively, which were
close to those of enamel. The excellent mechanical prop-
erties of PISNCs should be attributed to the special pore
structure formed by elongated Si3N4 grains and highly inter-
connected bicontinuous organic-inorganic microstructure. In
addition, PISNCs also exhibited excellent biocompatibility
on HGFs. PSN60 possessed excellent performance on initial
adhesion, spreading and proliferation of HGFs, as well as a
similar IL-6 release performance with PMMA. In conclusion,
polymer-infiltrated Si3N4 composites are mechanical promis-
ing candidates for dental restorations and high-load medical
applications.
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