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                    Impact of Nanotechnology on 
Dental Implants 5

CHAPTER

                   5.1     INTRODUCTION 
 Implants are commonly used in dental surgery for restoring teeth. One of the challenges in implantol-
ogy is to achieve and maintain the osseointegration as well as the epithelial junction of the gingival 
tissue with implants. An intimate junction of the gingival tissue with the neck of dental implants may 
prevent bacteria colonizations leading to peri-implantitis while direct bone bonding may ensure a bio-
mechanical anchoring of the artifi cial dental root ( Figure 5.1   ). 

 The fi rst step of the osseointegration of implants is called primary stability and is related to the 
mechanical anchorage, design of implants, and bone structure  [1] . This primary interlock decreases 
with time at the benefi t of the secondary anchorage, which is characterized by a biological bond-
ing at the interface between bone tissues and implant surface. Between the primary mechanical and 
secondary biological anchorage, a decreased implant stability could be observed. Many studies have 
attempted to enhance the osseointegration of implants by various surface modifi cations. The aim is to 
provide metal implants with surface biological properties for the adsorption of proteins, the adhesion 
and differentiation of cells, and tissue integration. These biological properties are related to chemical 
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72 CHAPTER 5 Impact of Nanotechnology on Dental Implants

composition, wettability, and roughness of metal implants surfaces. However, the control of these sur-
face properties at the protein and cell levels, thus in the nanometer range, remains a challenge for 
researchers and dental implants manufacturers. 

 Nanotechnologies may produce surfaces with controlled topography and chemistry that would help 
understanding biological interactions and developing novel implant surfaces with predictable tissue-
integrative properties  [2–4] . Various processing methods derived from the electronic industry such as 
lithography, ionic implantation, anodization, radio-frequency plasma treatments may be applied to the 
surfaces of dental implants to produce controlled features at the nanometer scale. These surfaces may 
then be screened by using high-throughput biological assays  in vitro . For instance, specifi c protein 
adsorption, cell adhesion, and differentiation of stem cells should be studied in relation to the surface 
properties. This approach may defi ne the ideal surface for a specifi c biological response. Following 
 in vitro  screening, nanostructured surfaces may then be tested in animal models to validate hypothesis 
in a complex  in vivo  environment. 

 New coating technologies have also been developed for applying hydroxyapatite (HA) and related 
calcium phosphates (CaP), the mineral of bone, onto the surface of implants ( Figure 5.2   ). Many 

 FIGURE 5.1 

  Tissue integration of dental implant. Note the intimate contact with gingival tissue in the upper part and the 
desired contact osteogenesis in the tapered lower part rather than distance osteogenesis.    
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735.1 Introduction

studies have demonstrated that these CaP coatings provided titanium implants with an osteoconduc-
tive surface  [5,6] . Following implantation, the dissolution of CaP coatings in the peri-implant region 
increased ionic strength and saturation of blood leading to the precipitation of biological apatite nano-
crystals onto the surface of implants. This biological apatite layer incorporates proteins and promotes 
the adhesion of osteoprogenitor cells that would produce the extracellular matrix of bone tissue. 
Furthermore, it has also been shown that osteoclasts, the bone resorbing cells, are able to degrade the 
CaP coatings through enzymatic ways and create resorption pits on the coated surface  [6] . Finally, the 
presence of CaP coatings on metals promotes an early osseointegration of implants with a direct bone 
bonding as compared to non-coated surfaces. The challenge is to produce CaP coatings that would dis-
solve at a similar rate than bone apposition in order to get a direct bone contact on implant surfaces. 

 This chapter reviews the different steps of the interactions between biological fl uids, cells, tissues, 
and surfaces of implants. Recent nanoscale surface modifi cations and CaP coating technologies of 
dental implants are discussed. The sequence of biological events in relation to surface properties is 
related. Mechanisms of interaction with blood, platelets, hematopoietic, and mesenchymal stem cells 
(MSCs) on the surface of implants are described. These early events have shown to condition the 

 FIGURE 5.2 

  Scanning electron micrographs and energy dispersive analysis for X-ray of (A) nanostructured 
titanium surface obtained by anodization and (B) nanosized thin CaP coating on titanium produced 
by electrochemical deposition. Note the regular array of TiO 2  nanopores of approximately 100     nm in 
diameter and the nanosized CaP crystals on titanium surfaces.    
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74 CHAPTER 5 Impact of Nanotechnology on Dental Implants

adhesion, proliferation, and differentiation of cells as well as the osseointegration of implants. Future 
implant surfaces may improve the tissue-integrative properties and long-term clinical success for the 
benefi ts of patients. 

   5.2     NANOSCALE SURFACE MODIFICATIONS 
 Surface properties play a determinant role in biological interactions. In particular, the nanometer-
sized roughness and the chemistry have a key role in the interactions of surfaces with proteins and 
cells. These early interactions will in turn condition the late tissue integration. In this prospect, differ-
ent methods have been reported for enhancing bone healing around metal implant  [2,7]  .  

 Modifying surface roughness has been shown to enhance the bone to implant contact and improve 
their clinical performance  [2,8]  .  Grid-blasting, anodization, acid-etching, chemical grafting, and 
ionic implantation were the most commonly used methods for modifying surface roughness of metal 
implants. Combinations of these techniques could be used such as acid-etching after grit-blasting in 
order to eliminate the contamination by blasting residues on implant surfaces. This grit-blasting resi-
due may interfere with the osseointegration of the titanium dental implants  [9–11] . It has been shown 
that grit-blasting with biphasic calcium phosphate (BCP) ceramic particles gave a high average surface 
roughness and particle-free surfaces after acid-etching of titanium implants. Studies conducted both 
 in vitro  and  in vivo  have shown that BCP grit-blasted surfaces promoted an early osteoblast differen-
tiation and bone apposition as compared to mirror-polished or alumina grit-blasted titanium  [12,13] . 
Anodization is a method commonly used to obtain nanoscale oxides on metals including titanium 
 [14,15] . By adjusting the anodization condition such as voltage, time, and electrolyte, nanoscale prop-
erties could be controlled. Shankar et al.  [16]  have reported that the diameters of the nanotubes could 
be modifi ed to a range from 20 to 150     nm in modifying voltage conditions. On the other hand, Kang 
et al.  [17]  found that TiO 2  nanotube arrays were more uniform on electro-polished than machined tita-
nium. Moreover, TiO 2  nanotubes on Ti improved the production of alkaline phosphatase (ALP) activity 
by osteoblastic cells. In particular, nanotubes with a diameter of 100     nm upregulated level of ALP activ-
ity as compared to 30–70     nm diameter nanotube surfaces  [18] . Since ALP is a marker of osteogenic dif-
ferentiation, these surfaces may demonstrate enhanced bone tissue integrative properties. 

 Another approach for improving osseointegration of dental implants is to apply a CaP coating hav-
ing osteoconductive properties  [19–21] . Different methods have been developed to coat metal implants 
with CaP layers such as plasma spraying, biomimetic, and electrophoretic deposition. Nevertheless, 
plasma-sprayed HA-coated dental implants have been related to clinical failures due to coating delimi-
tation and heterogeneous dissolution rate of deposited phases .  An electrochemical process which con-
sists of depositing CaP crystals from supersaturated solutions has been proposed for coating titanium 
implants with CaP layers  [22,23] . Upon implantation, these CaP coatings dissolve and release Ca 2�  
and HPO 4  

2�  increasing saturation of blood in the peri-implant region. This dissolution led to the pre-
cipitation of biological apatite nanocrystals with the incorporation of various proteins. This biological 
apatite layer will promote cell adhesion, differentiation into osteoblast and the synthesis of mineral-
ized collagen, the extracellular matrix of bone tissue. In addition to dissolution, osteoclast cells are 
also able to resorb the CaP coatings and activate osteoblast cells to produce bone tissue. As the result, 
these CaP coatings promote a direct bone-implant contact without an intervening connective tissue 
layer leading to a proper biomechanical fi xation of dental implants. 
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755.3 Interactions of Surface Dental Implants with Blood

   5.3     INTERACTIONS OF SURFACE DENTAL IMPLANTS WITH BLOOD 
 During surgery, blood vessels are injured and thus, dental implant surfaces interact with blood com-
ponents ( Figure 5.3   ). Various plasma proteins get adsorbed on the material surface within a minute. 
Platelets from blood interact also with the implant surface. Plasma proteins modify the surface while 
activated platelets are responsible for thrombus formation and blood clotting. Subsequently, the 
migrations of various cell types interact with the surface through membrane integrin receptors. These 
early events occur prior to peri-implant tissue healing. 

 Plasma contains dissolved substances such as glucose, amino acids, cholesterols, hormones, urea, 
and various ions ( Figure 5.4   ). Most of these components are needed for the viability of cells and tis-
sues. All of these blood substances could interact with implant surface thus modifying their chemical 
properties like charge or hydrophobicity. 

 Blood interactions with implants lead to protein adsorption, which is dependent on the surface 
properties of the material and occurs through a complex series of adsorption and displacement steps 
known as the Vroman effect  [24] . A hydrophilic surface is better for blood coagulation than a hydro-
phobic surface. Consequently, dental implants manufacturers have developed high hydrophilic and 
rough implant surfaces which in turn exhibited better osseointegration than conventional ones  [25] . 
Adsorption of proteins such as fi bronectin, vitronectin on surface of dental implants could promote cell 

 FIGURE 5.3 

  Interactions of surface of dental implants with blood. Note the 
numerous proteins, red blood cells, and activated platelets that 
lead to blood clotting on implants.    
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76 CHAPTER 5 Impact of Nanotechnology on Dental Implants

adhesion by cell-binding RGD domain (arg–gly–asp). This RGD sequence interacts with integrin pres-
ent on the cell membrane  [26] . Interactions between cell membrane integrins and proteins coated onto 
implant surface play a key role in adhesion of many cells types. After proteins absorption, the osseo-
integration is characterized by platelets adhesion and fi brin clots formation at the injured blood vessels 
site. It has been shown that implants in contact with platelet-rich plasma (PRP) with a platelet concen-
tration of approximately 1,000,000 protein/μl have a positive effect on osseointegration. At lower con-
centrations of PRP, the effect was not optimal, while higher concentrations resulted in a paradoxically 
inhibitory effect of bone regeneration. Other studies were not in agreement with this PRP benefi cial 
effect on the osseointegration of dental implants  [27] . The assessment of bioactivity of surface treated 
dental implants should be tested  in vitro  using biological fl uids containing blood components  [2] . 

   5.4     INTERACTIONS BETWEEN SURFACES AND MSCs 
 Following blood clotting around dental implants, several cells interact with surfaces for tissue heal-
ing. MSCs attracted to the injured site by chemotactic factors have a determinant role in peri-implant 
tissue healing. 

  5.4.1     Origin of MSCs 
 MSCs are stem cells derived from somatic tissue which can be differentiated into mesenchymal line-
ages such as bone, cartilage, fat, and skin. In addition, MSCs are present in many connective tissues 
and blood at low concentrations serving as a sort of internal repair system. MSCs are distinguished 

 FIGURE 5.4 

  Scheme showing blood composition and components that primarily 
interact with surface of dental implants.    
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775.4 Interactions Between Surfaces and MSCs

from other cell types by two important characteristics. First, they are unspecialized cells able to 
renew themselves through cell division, sometimes after long periods of inactivity. Second, under cer-
tain physiologic or experimental conditions, they can be induced to become tissue- or organ-specifi c 
cells with special functions. MSCs have high proliferative and multi-potent capacity leading to dif-
ferentiated cells under the guidance of various cues or niches. MSCs are conventionally defi ned as 
adherent, non-hematopoietic cells expressing markers such as CD13, CD29, CD44, CD54, CD73, 
CD90, CD105, and CD166, and being negative for CD14, CD34, and CD45  [28,29] . While originally 
identifi ed in the bone marrow  [30] , MSCs have been extracted from numerous tissues including adi-
pose  [31,32] , heart  [33] , dental pulp  [34] , peripheral blood  [35] , cord blood  [36] . One of the major 
properties of MSCs is their ability to differentiate into various cells like adipocytes  [37] , chondro-
cytes  [31] , osteoblasts  [38] , neurons  [39,40] , muscles  [40,41] , hepatocytes  [42]   in vitro  after treat-
ment with induction agents. 

   5.4.2     Migration, Adhesion, and Proliferation 
 The integration of implant with neighboring bone and gingival tissue depends on successful crosstalk 
between surrounding tissue and implant surface. The challenge in dental implant research is the capa-
bility of the surface to guide cells colonization and differentiation. Cell migration, adhesion, and pro-
liferation on implant surfaces are a prerequisite to initiate the tissue regeneration ( Figure 5.5   ). Authors 
have shown that some factors present in tissues and secreted during the infl ammatory phase are able 
to attract MSCs to the injured site  [43,44] . MSCs migration and proliferation were stimulated  in vitro  
by many growth factors including PDGF  [45,46] , EGF  [46,47] , VEGF  [48] , TGF-β  [45,49] , BMP-2 
and BMP-4  [45,48] . These factors are certainly released in the injured sites by cells involved in tis-
sue healing. Furthermore, plasma clot serve as storage to fi brin molecules and release system for a 
variety of bioactive factors including growth factors that attract and differentiate MSCs into specifi c 
lineages  [50–52] . The platelet factors are well-known to stimulate the proliferation of MSCs  [53] . The 
formation of a clot matrix with a potent chemo-attractive factor like PDGF, EGF, or fi brin may further 

 FIGURE 5.5 

  Scheme showing the adhesion, proliferation, and differentiation of MSCs on 
nanostructured surfaces. The adhesion of stem cells is characterized by the expression 
of cell surface markers (VCAM, ITG, THY1) while phenotypic markers (Runx2, ALP, 
OCN, OPN) are specifi c to their osteoblastic differentiation (OCN: osteocalcin; OPN: 
osteopontin).    
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78 CHAPTER 5 Impact of Nanotechnology on Dental Implants

enhance MSCs numbers and peri-implant tissue healing surface. Moreover, the plasma clot in con-
tact with implant surface represents a three-dimensional microporous structure that allows diffusion of 
regulatory factors  [54,55]  and is involved in the migration, proliferation, and differentiation of MSCs. 
After MSCs recruitment in the injured site, cells adhere on the local extracellular matrix as well as on 
the implant surface beginning an extensive proliferation in order to build up new tissue. Again, surface 
modifi cations of implants in the nanometer range condition the biological responses. 

   5.4.3     Differentiation 
 In the microenvironment, MSCs are stimulated by some specifi c factors to differentiate into the ade-
quate cell line. Under the infl uence of these factors, MSCs switch to osteoblastic cells in contact to 
bone tissue while they differentiate into fi broblastic lineage in the gingival tissue region. These two 
differentiation pathways are in concurrence around dental implants. In some cases, implants are 
encapsulated by fi brous tissue due to the proliferation and differentiation of MSCs into fi broblastic 
cells. In response to cytokine, fi broblasts migrate and generate a capsule of collagen, the fi rst step 
in generation of gingival tissue or rejection on contact to bone. This fi brous capsule prevents bond-
ing between implant surface and juxtaposed bone and caused a failure of the implant  [56] . On the 
other hand, both the differentiation of MSCs into fi broblastic lineage and the fi broblastic adhesion 
are desired in the gingival upper part of dental implants. Fibroblasts adhesion has been shown to be 
lower on nanoscale surface compared to conventional surfaces  [57] . Moreover, nanometer-sized fea-
tures have been shown to decrease fi broblast adhesion and proliferation  [58,59] . The micro- and nano-
scale surface properties of metal implant including chemistry, roughness, wettability, could affect bone 
formation  [60] . Numerous treatment such as machining, grit-blasting, Ti/HA plasma spray, chemical 
etching, anodization are available to modify the implant surface. Research has specifi cally demon-
strated that nanorough Ti  [61]  and nanostructured Ti can enhance osteoblast adhesion and differen-
tiation compared to their nano-smooth control  [62] . Furthermore, surface with micro- and nanopores 
have shown to enhance greatly osseointegration  [63,64] . Surface properties may control the steps of 
adhesion, proliferation, and differentiation of MSCs and thus, condition tissue integration. 

    5.5     TISSUE INTEGRATION 
 Brånemark et al.  [65]  described the osseointegration as a direct structural and functional bone to 
implant contact under load. As previously discussed, the biological events occurring at the tissue–
implant interface are infl uenced by the chemistry, topography, and wettability of dental implant sur-
faces. The challenge in developing new implant surface consist in increasing the clinical success rate as 
well as decreasing the tissue healing time for immediate loading of implants, particularly in aesthetic 
situations  [66–68] . One of the objectives is to develop implant surface having predictable, controlled, 
and guided tissue healing. For instance, surfaces that promote contact osteogenesis rather than dis-
tance osteogenesis would be desired in bony site while intimate fi brous tissue healing in gingival tissue 
( Figure 5.1 ). In order to enhance this intimate contact between tissues and implant, surface treatments 
at the nanometer scale have been performed on metal implants and tested in various animal models. 
Implant surface with various roughness have been used to increase the total area available for osteo-
apposition. Kubo et al.  [66]  observed a substantial increase by 3.1 times in bone–titanium interfacial 
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795.5 Tissue Integration

strength by Ti nanotube (300     nm) at 2 weeks of implantation in femur of rats. These results suggest the 
establishment of nanostructured surfaces for improved osteoconductivity. Moreover, Ogawa et al.  [69]  
have prepared Ti nanostructure by physical vapor deposition and tested their osseointegration in femur 
of rats. They found an increased surface area by up to 40% and a greater strength of osseointegration 
for the nanostructured compared to an acid-etched surface. Some authors have correlated the initial 
events in bone formation adjacent to surface with the long-term tissue response to these materials 
in humans  [70,71] . 

 By mimicking the chemical composition of natural bone, hydroxyapatite and CaP coatings on 
Ti greatly enhance osseointegration. As shown in  Figure 5.6   , a greater direct bone apposition was 
observed on CaP coated than on bare Ti implants. During the bone healing process, calcium and 

 FIGURE 5.6 

  Micrographs showing the osseointegration of bare titanium (Ti) and CaP-coated implants after 
implantation in femoral condyles of rabbits for 4 weeks. Note the direct bone apposition on 
CaP-coated implants (arrows) on both histology (basic fuchsine, toluidine blue staining) and 
back-scattered electron microscopy (BSEM) images.    
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80 CHAPTER 5 Impact of Nanotechnology on Dental Implants

phosphate ions are released from the CaP coating in the peri-implant region and saturate body fl uids to 
precipitate a biological apatite, which serves as a substrate for osteoblastic cells producing bone tissue. 
Several authors have shown the benefi t of using CaP-coated titanium implants for improving the osseo-
integration  [72,73] . In particular, Le Guehennec et al.  [21]  have studied the osseointegration of four 
implant surfaces in the femoral epiphyses of rabbits after 2 and 8 weeks of healing. In this study, the 
bone-implant contact and bone growth inside the chambers were compared for four different implant 
surfaces and shown that biomimetic coating method may enhance the bone apposition onto titanium. 
In order to prevent coating delamination and implant loosening, the CaP coating should dissolve or 
degrade under osteoclastic activity at a similar rate than bone apposition. The fi nal result should be 
a direct bone-implant coating without the presence of fi brous tissue. Another advantage of these CaP 
coatings is related to their preparation by biomimetic methods at physiological temperature and pH 
from simulated body fl uids. CaP crystals have characteristics that resemble bone mineral in term of 
size and composition. Furthermore, it is possible to incorporate biologically active drugs such as anti-
biotics or growth factors during the precipitation of CaP coatings on Ti implants  [74] . These molecules 
could be locally and gradually released in the peri-implant region for either preventing bacterial infec-
tions or stimulating bone growth. 

   5.6     CONCLUSION 
 Many reports have shown that nanometer-controlled surfaces have a great effect on early events such 
as the adsorption of proteins, blood clot formation, and cell behaviors occurring upon implantation 
of dental implants. These early events have an effective impact on the migration, adhesion, and dif-
ferentiation of MSCs. Nanostructured surfaces may control the differentiation pathways into specifi c 
lineages and ultimately direct the nature of peri-implant tissues. Despite an active research in dental 
implants, the ideal surface for predictive tissue integration remains a challenge. 
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